Power System Reliability Evaluation
Incorporating Dynamic Thermal Rating and Network Topology Optimization
Ruosong Xiao, Yingmeng Xiang, Lingfeng Wang, and Kaigui Xie

Abstract—The electrical power grid is a critical infrastructure that plays a key role in supporting modern society. The reliability of power systems needs to be continuously maintained to deliver high-quality electric services. Due to the tremendous amounts of potential investment demanded for constructing new electricity transmission facilities, electric utilities need economical solutions that can enable them to supply electricity to their customers in a cost-effective and reliable way. Dynamic thermal rating (DTR) and network topology optimization (NTO) technologies aim to maximize the use of existing transmission assets and to provide flexible ways to enhance reliability of the power system. In this study, the DTR and NTO are incorporated into the power grid reliability assessment procedure using the sequential Monte Carlo simulation. Multiple case studies are carried out based on the modified IEEE RTS-79 and IEEE RTS-96 systems, accounting for long-term multi-area weather conditions. The numerical results indicate that with the incorporation of DTR and NTO, the reliability of power systems can be improved. The effect of these methods is especially significant for power grids with lower electricity delivery capabilities.

Index Terms—Dynamic thermal rating, network topology optimization, reliability improvement, operational strategies.

NOMENCLATURE

1) Indices

b Index for the substations.
d Index for the load demands.
$e \in \{fr, to\}$ Index for the \{from, to\} end of the transmission lines.
g Index for the generators.
i Index for the busbars. $i \in \{1, 2\}$.
l Index for the lines.

2) Sets

G_b/D_b Set of the generators/loads in substation b.
LF_b/LT_b Set of the transmission lines whose directions of power flow are from/to substation b.

3) Parameters

δ_{max} Maximum allowed voltage angle.
M_i A sufficiently great number.
p_d^{max} Maximal amount of load demand d.
$p_g^{\text{min}}/p_g^{\text{max}}$ Lower/upper bound of power output of generator g.
p_l^{max} Transmission capacity limit of the line l.
$n_{b}^{\text{max}}/n_{l}^{\text{max}}$ Maximum number of allowed busbar switching/line switching actions.
n_l^{max} Maximum allowed number of total switching actions.
x_l Impedance of the line l.

4) Variables

$\delta_{b,i}$ Angle of the voltage at busbar i in substation b.
$\delta_{l,e}$ Angle of the voltage of transmission line l at end e.
$\delta_{l,e,i}$ Angle of the voltage at busbar i associated with end e of transmission line l.
h_b Binary variable determining the connection of the two busbars in substation b (0: disconnected, 1: connected).
h_l Binary variable determining the switching state of the transmission line l (0: open, 1: closed).
$h_d/h_g/h_{l,e}$ Binary variable determining which one of the two busbars the load/generator/end e of transmission line l is connected to.
l Conductor ampacity (rating).
m$_C$ Conductor’s total heat capacity.
P$_{d,i}$/P$_{g,i}$ Load demand/generation output connected to busbar i.
P$_l$ Power flow on line l.
P$_{l,e,i}$ Line power flow on line l of which the end e is connected to busbar i.

R. Xiao was with the Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA and the State Key Laboratory of Power Transmission Equipment & System Security, School of Electrical Engineering, Chongqing University, Chongqing 400030, China. He is now with the State Grid Chengdu Gaoxin Power Supply Company, Chengdu 610041, China (email: rxiao@cqu.edu.cn).
Y. Xiang is with GEIRI North America, San Jose, CA 95134, United States. (email: yingmeng.xiang@geirina.net).

L. Wang is with the Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA (email: lf.wang@ieee.org).
K. Xie is with the State Key Laboratory of Power Transmission Equipment & System Security, School of Electrical Engineering, Chongqing University, Chongqing 400044, China (email: kaiguixie@vip.163.com).
\(Q_c \) Rate of convection heat loss.

\(Q_r \) Rate of radiated heat loss.

\(Q_s \) Rate of solar heat gain.

\(R(T_c) \) Conductor AC resistance at the temperature \(T_c \).

\(T_a \) Ambient temperature.

\(T_c \) Critical conductor temperature.

I. INTRODUCTION

Reliability is one of the most important requirements for electrical power systems. In recent years, various kinds of smart grid technologies are proposed, developed and deployed in the power systems, such as renewable generations, microgrids, and cutting-edge communication and control methods. It is becoming more and more challenging for electric utilities to ensure the reliability of power systems in the face of emerging uncertainties. Thus, the impacts of these technologies on power system reliability need to be carefully examined, which has spurred high interests on the related topics. For example, in [1] the high penetration of wind power on the reliability evaluation of power systems is studied. Also, the power system reliability is evaluated considering other types of renewable generation such as tidal generation [2] and solar generation [3].

For all kinds of technologies, their impacts on the power system reliability are heavily dependent on their associated operation strategies. The integration of FACTS devices [4], [5] and energy storage [6] could increase the flexibility of power system operations in normal and contingency states, which is beneficial to enhancing the power system reliability. Yet these technologies usually require tremendous amounts of investment. Meanwhile, although the smart grid technologies can increase the power system reliability, they bring cyber risks. The increasing dependence of the power system on the associated cyber layer for monitoring and control inevitably brings vulnerabilities for cyber intrusions and hacking. This could increase the occurrence probability of the cyber-induced failures, and lead to the power system reliability degradation. Some research has been performed investigating the impacts of cyberattack risks on power system reliability such as [7] and authors’ previous work [8].

Clearly, some considerations should be given to those technologies which explore the potential of existing power system assets and improve the system reliability in a cost-effective manner. In this spirit, this paper is then focused on improving the power system reliability efficiently. Two representative cost-effective methods are considered: the dynamic thermal rating (DTR) [9] and the network topology optimization (NTO) [10]. The dynamic thermal rating can increase the transmission capacity without extra investments for building new lines; the network topology optimization is a novel power system operation strategy, which can potentially minimize the load shedding in the face of a contingency. Furthermore, as two representative cost-effective methods, they can work jointly to further increase the power system reliability.

Traditionally, transmission line ratings are determined by using a static thermal rating (STR), which calculates line ratings with assumed conservative weather conditions, resulting in possible underestimations of transmission line ratings [11]. On the other hand, the DTR system accounts for the real-time, dynamic environmental conditions and thus could release the underestimated transmission capacities. Various field tests have been conducted to quantify the capacity increment that DTR is able to bring to OHLs. It has been reported that by enforcing DTR, in over 96% of the time the line rating could be increased; the increment itself may vary from 5% to 50%, or even over 150% in some specific conditions; the overall network transmission capacity has also been reported to be probably increased by 15% [12], [13]. With the ability to boost the network transmission capacity, DTR is very suitable to be integrated into system operations for fulfilling particular operating objectives. In [14] DTR has been incorporated into a power system economic dispatch to reduce either the generation cost or the transmission lost. In [15] a real-time congestion management problem considering DTR is discussed. The effect of the enforcement of DTR into a security constrained unit commitment problem is presented in [16]. Meanwhile, due to the correlation between DTR and the wind power generation, studies have also indicated the specific benefits that DTR brings to wind generation integrated power systems [17]. The impacts of the DTR on the power system reliability have also attracted much attention. It has been proved that the deployment of DTR will improve the power system reliability [18], [19]. In addition, by coordinating DTR with other smart grid technologies, the potential benefit may be more dramatic. As shown in [20], DTR is deployed with an optimal demand response scheme for an improved performance. And in [21], DTR is adopted along with the optimal transmission switching mechanism to enhance the system reliability.

Similar to DTR, network topology control is a type of technology that helps to optimize the system operation by adjusting the transmission network configuration in contrast with traditional fixed topology based optimal power dispatch. Switching the transmission lines on/off is one of the common ways to change the network topology. This optimal transmission switching mechanism (OTS) has been envisioned in [22] and modeled as a mixed integer linear programming (MILP) problem as an extension to traditional DC-OPF (shortly denoted as “OPF” in the rest of this paper) in [23]. Later, OTS has been proposed for realizing different operating goals in various studies. In [24], OTS is enforced to reduce the system total cost/loss. Reference [25] presents the deployment of OTS for reducing costs as well as satisfying the N-1 reliability standard. Moreover, in [26] the impact of OTS on the unit commitment problem is discussed. Another approach to adjust the network topology is the reconfiguration of high voltage substations. Theoretically, since generators, load demands, transmission lines and substation busbars are all connected through switching devices (e.g., circuit breakers), the operation of these switching devices (such as busbar switching) will generate different configurations of component connections and result in different network topologies. It has been demonstrated in [27], [28] that the busbar switching (BBS) can
improve the short-term power system operation security, such as preventing transmission overloading and reducing load curtailment. Then in [10] a novel system topology optimization technology is proposed that considers the optimal switching of both transmission lines and busbars, namely, the NTO. It has been argued in [10] that, with the added busbar switching mechanism, NTO could offer the power system a higher operating flexibility. Meanwhile, it has also been demonstrated in [10] that with the incorporation of NTO the operating congestion can be dramatically relieved and operating cost can then be significantly reduced. This novel technology has also attracted considerable attention more recently due to its promising capability of better using the existing power delivery infrastructure.

Both DTR and NTO share a common intrinsic philosophy, i.e., they both increase the system’s power delivery capability through relaxing some conventional operating constraints and without the need of building new power transfer facilities. It is thus a natural thought that the incorporation of both technologies into power system operating strategies would improve the power system reliability in a cost-effective manner. This research aims to incorporate DTR and NTO into the conventional reliability assessment framework of power systems and to quantify the impact of these new operating strategies on the power system reliability, especially for complex, large-scale power systems accounting for influence of long-term, multi-area weather conditions.

The major contributions of this paper are summarized as follows:

1) We propose to jointly use multiple cost-effective methods to maximize the power system reliability. The DTR and NTO, as two promising cost-effective methods, are integrated into the power system reliability evaluation model. The joint evaluation of such cost-effective methods, to the authors’ best knowledge, are novel or have not been emphasized in the existing literature.

2) The long-term multi-area weather conditions in a bulk power system are considered in the DTR model, which enables a more comprehensive and practical DTR model as compared with the existing work.

3) The NTO method is integrated into the power system burden reduction technique in the Monte Carlo simulation. The advantage of NTO over the traditional OPF, OTS, and BBS are demonstrated with comparative case studies.

In summary, this paper is significantly different from the existing work, as we propose to jointly adopt multiple cost-effective methods based on different mechanisms to improve the power system reliability efficiently and economically, while considering the practical and computational issues of the methods.

The organization of this paper is laid out as follows: The DTR models are discussed in section II; the NTO modeling is described in section III; the power grid reliability evaluation procedure incorporating DTR-NTO is proposed in section IV; section V describes the simulation studies and presents the case study outcomes; and section VI summarizes this study and provides future research directions.

II. OVERHEAD LINE DYNAMIC THERMAL RATING

Either from the planning, or the operating point of view, transmission line ratings are undeniably critical quantities of the electrical power transmission network. Insufficient transmission line ratings may become weak points within the transmission system, limiting the total power transfer capability and jeopardizing the overall system reliability [29], [30]. Therefore, more accurate line rating estimation methods become necessary. Dynamic line rating is one such technology. It is developed by considering that the overhead lines (OHLs) rating is practically influenced by a variety of real-time factors. There are several ways to determine OHL dynamic line ratings, such as weather monitoring-based methods, conductor temperature monitoring-based methods, conductor tension measuring-based methods, and so forth [31]. Among these methods, DTR accounts for the varying operating conditions and calculates OHL ratings according to the conductor’s thermal behaviors.

With the consideration of varying operating conditions, DTR could produce more accurate OHL rating estimations. However, there is no guarantee that the enforcement of DTR could always bring benefits to the power systems, indeed. For critical infrastructures like electrical power systems, where the reliability and security are among the top priorities, implementing relatively novel technologies such as DTR could be risky in certain situations. The drawbacks of DTR come first from its high demand on the detailed weather data. The erroneous data, either the false real-time monitoring data or the erroneous forecasting data, could impair the estimation accuracy and result in biased assessments of DTR performance [32]. On the other hand, DTR is highly dependent on the weather conditions. The performance of DTR may vary for different places with different climatic types. In such a case, neglecting the climatic and geographical distribution could also lead to biased assessments of DTR performances [33]. However, even with the above drawbacks, advantages of DTR are undoubtedly more prominent. Reference [34] has demonstrated that to accomplish the same level of capacity boost, the DTR would be much cheaper than the traditional network reinforcement solution. Presently, DTR is recommended as a cost-effective technology to utilize the power system assets more efficiently [35].

The mechanism of DTR has been discussed since the 1970’s [36]. Nowadays, several standards have been developed for DTR calculations in practice, such as IEEE Standard 738 [37], IEC/TR 61597 [38], and CIGRE Technical Brochure 601 [39]. Generally, these methods take into account the surrounding conditions (e.g., velocity and direction of wind, solar radiation, environmental temperature, etc.) and calculate OHL real-time thermal ratings considering the conductor HBE (heat-balance equation). The heat-balance of power conductor is formed as the balance between conductor cooling (convection heat loss, radiative heat loss, evaporative cooling, etc.) and the conductor heating (solar radiation heat gain, conductor Joule heat gain, skin effect heat gain, etc.) [40]. Difference between conductor heating and cooling will cause the changing of conductor heating...
temperature during the transient process, and eventually the heat loss rate along with the heat gain rate should match each other in a steady state manner. With real time monitored environment parameters and conductor parameters, the conductor ampacity, i.e., the OHL real time thermal rating can then be calculated through HBE. Although developed by different organizations, these calculation methods function in a similar way and offer ampacity estimations with only a small difference [41], [42]. Since it is often accepted that the IEEE Standard 738 is the most common method to obtain OHL thermal ratings in the U.S. [43], the DTR calculation in this study will follow the HBE form developed in such a standard.

In IEEE Standard 738, the HBE takes into account the convection and radiative heat losses, as well as the heat gain due to solar radiation and the conductor’s Joule heat. A non-steady-state form of HBE is represented as follows:

\[Q_c(T_a, T_c, v_w) + Q_r(T_a, T_c) + mc_p \frac{dT_c}{dt} = Q_v + I^2R(T_c) \]
\[\frac{dT_c}{dt} = \frac{[Q_v + I^2R(T_c) - (Q_c(T_a, T_c, v_w) + Q_r(T_a, T_c))]}{mc_p} \]

These two differential equations indicate that the rates of the conductors’ temperature would grow rapidly with the increase of the current in the conductor for the non-steady-state. Typically, for Drake aluminum cable steel reinforced (ACSR), the conductor temperature can reach a steady value within sufficient time, usually one hour [37]. In such a case, the conductor heat balance can be described as the steady-state HBE as follows:

\[Q_c(T_a, T_c, v_w) + Q_r(T_a, T_c) = Q_v + I^2R(T_c) \]

Therefore, the thermal rating of an OHL can be obtained as:

\[I = \frac{\sqrt{Q_v + Q_r + Q_c(T_a, T_c, v_w) + Q_r(T_a, T_c) - Q_v}}{R(T_c)} \]

Although the transient form of HBE such as (1) and (2) may derive the OHL dynamic thermal rating more accurately, the difference introduced by assuming a steady-state will not be significant especially if the transient process last for over 30 minutes, according to [43], [44]. For simplicity, the DTR model will follow the steady-state form HBE shown in (4) in this study.

The HBE expressed in (4) also indicates the fact that dynamic thermal line ratings are sensitive to the related weather conditions. Note these weather conditions are not only time-varying, but also geographically dispersed. Fig. 1 illustrates an example where some OHLs connecting bus A and B span across multiple geographical areas with different weather conditions. Intuitively, the windy section II and the rainy section IV may be in suitable weather conditions, for which the OHLs could achieve a capacity boost with DTR enforcement. Yet for safety considerations, the ratings should be determined by the most limiting span, i.e., the span under the harshest weather condition within the whole OHL [15]. Therefore, in this example, it is likely the whole OHL rating should be limited by the sunny section I. Ignorance of such consideration could result in a false estimation of OHL dynamic thermal ratings, and expose the line to risk of possible overloading conditions.

Some existing studies have already been conducted to analyze the impact brought by meteorological weather condition variations. For example in [33], to achieve a more comprehensive DTR designing, such variation has been investigated and then been considered in the DTR system designing and implementation. Also in [45] the ambient temperature variation has been incorporated into the transmission line modeling. Furthermore, the impact brought by the meteorological weather condition variation has been investigated in [46] through various power flow analyses. Although these studies have already pointed out the importance of considering meteorological weather condition variations, the previous studies of DTR incorporated power system analyses mostly neglect such diverse meteorological impact on transmission lines, or alternatively, simply adopt some mean values of a whole area instead. It is necessary to further study the reliability impact of meteorological weather condition variation on DTR incorporated power system. Therefore, in this study, such impact would be taken into consideration, through determining the overall OHL ratings as the smallest one of all DTR calculations using different weather conditions in different areas.

![Fig. 1. An example of OHLs influenced by multi-area weather conditions](image-url)

III. NETWORK TOPOLOGY OPTIMIZATION MODELING

The substations play critical roles in the power grid, as they are the junction points for power flows, generation outputs, and load demands. The substations are made up of multiple devices for performing the needed functions such as power transformation and metering. These elements can be connected to or disconnected from the substation by controlling the related switching devices, especially the circuit breakers. The number of circuit breakers as well as their connections to the busbars are of great importance, as they could influence the power delivery reliability, the power system operation flexibility, and even the security of the substations. There are various kinds of bus system with respect to different configurations of circuit breakers and busbars in the bulk power system. Due to the high reliability and flexibility performance, it is often suggested to implement a breaker and a half arrangement in high-voltage substations [47], as illustrated in Fig. 2.
Assuming the breaker and a half bus system is pervasively adopted in the power grid, a generalized NTO model can be shown in Fig. 3. The switching actions involved in the NTO model are illustrated as follows as well. It also indicates the great flexibility that the system could benefit from the NTO mechanism: with different switching configurations, the busbars of the two buses and the transmission line can be in either a connected/close state or a separated/open state; the generators, load demands and transmission line end can be switched to either of the two busbars, respectively.

Then, the NTO model is mathematically formulated in detail by the following equations/constraints [10]. For two busbars in a same substation, their voltage angles are identical if they are connected, otherwise independent, as described by (5):

\[-\delta^\text{max}(1 - h_b) \leq (\delta_{h,1} - \delta_{h,2}) \leq \delta^\text{max}(1 - h_b) \quad \forall b \]
(5)

Constraints (6)-(7) describes the generator output limits, and their connection to either one of the two busbars in the related substation.

\[(1 - h_g)p^{\text{min}} \leq p_{g,1} \leq (1 - h_g)p^{\text{max}} \quad \forall g \]
(6)

\[h_g p^{\text{min}} \leq p_{g,2} \leq h_g p^{\text{max}} \quad \forall g \]
(7)

Similarly, constraints (8)-(9) indicate a load demand in a substation can connect to either one of the two busbars in the related substation. In addition, constraints (8)-(9) also consider possible load curtailment, as the actual load demands can be less than the maximum load demand.

\[0 \leq p_{d,1} \leq (1 - h_d)p^{\text{max}} \quad \forall d \]
(8)

\[0 \leq r_{d,2} \leq h_d r^{\text{max}} \quad \forall d \]
(9)

The relationships and constraints related to transmission lines are mathematically represented by (10)-(14).

\[-(1 - h_{Le})p^{\text{max}} \leq p_{Le,1} \leq (1 - h_{Le})p^{\text{max}} \quad \forall l, e \]
(10)

\[-h_{Le} p^{\text{max}} \leq p_{Le,2} \leq h_{Le} p^{\text{max}} \quad \forall l, e \]
(11)

\[-h_l p^{\text{max}} \leq p_{l,1} \leq h_l p^{\text{max}} \quad \forall l, e \]
(12)

\[h_{Le} \leq h_l \forall l, e \]
(13)

\[P_l = P_{Lfr,1} + P_{Lfr,2} \quad \forall l \]
(14)

Constraints (10) and (11) represent the switching options at the line ends; constraints (12) and (13) describe the service status on the line; the power flow at the end of the line is calculated considering the possible power flows from the two busbars in (14).

The line power flow is described in constraints (15)-(17).

\[-(1 - h_l)M_l \leq \frac{\delta_{fr} - \delta_{Lfr}}{x_l} - P_l \leq (1 - h_l)M_l \quad \forall l \]
(15)

\[-h_{Le} \delta^{\text{max}} \leq \delta_{Le} - \delta_{Le,1} \leq h_{Le} \delta^{\text{max}} \quad \forall l \]
(16)

\[-(1 - h_{Le})\delta^{\text{max}} \leq \delta_{Le} - \delta_{Le,2} \leq (1 - h_{Le})\delta^{\text{max}} \quad \forall l, e \]
(17)

Considering that if the busbars are interconnected, there will be no need to differentiate which busbar the generator, load demand, or line end are connected to. Constraints (18)-(20) are thus introduced to tighten the constraints.

\[h_b + h_g \leq 1 \quad \forall b \in G_b \]
(18)

\[h_b + h_d \leq 1 \quad \forall b \in D_b \]
(19)

\[h_b + h_{Le} \leq 1 \quad \forall b, e \quad l \in LF_b, \quad l \in LT_b \]
(20)

The balance between the power entering and the power leaving a busbar is denoted by (21)-(22).

\[\sum_{g \in G_b} P_{g,1} - \sum_{d \in D_b} P_{d,1} - \sum_{l \in LF_b} P_l + \sum_{l \in LT_b} P_l = 0 \quad \forall b \]
(21)

\[\sum_{g \in G_b} P_{g,2} - \sum_{d \in D_b} P_{d,2} - \sum_{l \in LF_b} P_l + \sum_{l \in LT_b} P_l = 0 \quad \forall b \]
(22)

Limitations of the maximal number of allowable switching actions are described by (23)-(25). In practice, if the values of n_b^{max}, n_l^{max} and n_{Le}^{max} are sufficiently large, all switching actions would be considered simultaneously.

\[\Sigma_{b=1}^{n_b}(1 - h_b) \leq n_b^{\text{max}} \]
(23)

\[\Sigma_{l=1}^{n_l}(1 - h_l) \leq n_l^{\text{max}} \]
(24)

\[\Sigma_{e=1}^{n_{Le}}(1 - h_{Le}) \leq n_{Le}^{\text{max}} \]
(25)

In reliability analysis, the main concern is to minimize the amount of the possible load curtailment, i.e., maximally satisfy the load demands. Thus, the objective function for the NTO problem formulation applied to reliability analysis is shown in (26).

\[\max \Sigma_{ad=1}^{n_d}(P_{d,1} + P_{d,2}) \]
(26)

The whole NTO problem formulation consists of (5)-(26). The mathematical model forms an MILP optimization problem. Such a problem can be solved by commercial solvers such as CPLEX [48]. Note in this NTO problem formulation, if n_b^{max} is set to be zero, i.e., no busbars are allowed to split, the NTO problem becomes an OTS problem; if n_l^{max} is set to be zero, i.e., no transmission lines are allowed to switch, the NTO problem becomes a BBS problem; and if both n_b^{max} and n_{Le}^{max} are set to be zero, the problem returns to the original OPF problem form. Again, it should be noted that the term “OPF” used in this paper represents the traditional DC-OPF widely used in power system reliability evaluation.

Table I lists the comparison between OPF, OTS, BBS, and NTO models used in reliability evaluation. With the ability to reconfigure connections of transmission lines, generators, loads, along with the busbars, NTO combines both the OTS and BBS mechanisms. It can be seen from this table that, from the mathematical modeling point of view, the OPF, OTS and BBS problem are in fact specific forms of the NTO problem: they all share the same object function; yet by removing some constraints, the NTO problem could be transformed to either OTS, BBS or OPF problem. As addressed in [10], with the more
effective means, i.e. BBS added, the NTO could offer the system a higher flexibility, and lead to a further reduced operating cost than either OTS, BBS or OPF. Similarly, it can be thus concluded here that, as a systematic transmission network topology optimal control strategy, NTO could help find the relatively optimal network topology switching scheme, of which the system total load curtailment could be minimized. And for practical system operations, the NTO technology could make the most use of the existing transmission facilities, offering the system operator a higher network topology control flexibility. In summary, the presented NTO model could provide further improved system flexibility beyond either OTS or BBS, and consequently enhance the system reliability.

IV. INCORPORATING DTR-NTO INTO RELIABILITY EVALUATION FRAMEWORK

Since both the DTR and NTO technology possess the ability to boost the transmission capacity, it is prospective that the enforcement of both DTR and NTO could improve the overall power system reliability as well. In addition, when compared to the case that only NTO is enforced through system operating, since mostly the OHL dynamic thermal rating would be higher than the static thermal rating, the DTR-NTO incorporation may help release system congestion conditions. The NTO model may find possible better reconfiguration solutions then. On the other hand, when compared to the case that only DTR is considered, as the NTO mechanism possess the ability to adjust network topology, load curtailment in some system operating state may be reduced, or even avoided. Thus undoubtedly, the reliability improvement would be maximized when DTR and NTO are enforced simultaneously.

To demonstrate such a reliability improvement, a DTR-NTO incorporated reliability evaluation framework is proposed in this study based on the sequential Monte Carlo simulation (MCS). In general, the sequential MCS-based reliability evaluation framework includes several basic steps. The component reliability models should be established first. With the component reliability related parameters coupled with the network conformation data, random system states are sampled by using the sequential MCS. Load curtailments for all sampled states will be calculated through the optimal power flow (OPF) analysis. Finally, after sampling sufficient amounts of system states, with all the sampled states as well as the corresponding load curtailment records, reliability indices representing power supply adequacy from differing angles can be calculated.

![Flowchart of DTR in reliability evaluation procedure incorporating DTR-NTO](image)

With the incorporation of the DTR mechanism, transmission
line ratings will be determined dynamically with corresponding environmental changes. Since DTR requires detailed weather information which is usually not easy to obtain for a long-term period, here an ARMA (Auto-Regressive and Moving Average) model is adopted to generate sufficient weather data. Meanwhile, note that the commonly used IEEE RTS does not offer detailed OHL information, which is required for the DTR calculation [24]. In this study, the modification of dynamic line ratings will be conducted through DTR ratios: for each hourly sampled system state, based on real-time weather data in each geographical area, local DTR ratios are first calculated as the ratios between the dynamic thermal line ratings and the static thermal line ratings. For long-distance OHLs crossing multiple areas, the overall DTR ratios will be determined according to different weather conditions within these areas: the lowest local DTR ratio among all crossed areas will be adopted as the final DTR ratio result for such OHLs. Finally, the OHL dynamic thermal ratings are determined through multiplying the DTR ratio with their original ratings, and the system data will be thus updated accordingly. The data flow chart of the above DTR processing in DTR-NTO incorporated reliability evaluation procedure is shown in Fig. 4.

On the other hand, NTO is a system operation strategy, essentially. With the NTO being considered, the enforcement of NTO could help reduce load curtailments of certain system states. And in the DTR-NTO-based reliability evaluation procedure, similar to OPF, the NTO model would be used to calculate system load curtailment MCS sampled states. Yet note here, to save the computational cost, in the case where load demands for all customers are already satisfied, or the OPF calculated system load curtailment is zero, NTO will not be executed. Otherwise, NTO will be executed. The resultant load curtailment along with the performance of NTO will be recorded for further analysis.

The flowchart of the overall DTR-NTO-based reliability evaluation procedure is depicted in Fig. 5.

V. SIMULATION STUDIES

To demonstrate the influence of the integration of DTR-NTO, IEEE RTS-79 [42] and IEEE RTS-96 [43] with appropriate modifications are adopted as the test systems. All OHLs are assumed to be standard 795 kcmil 26/7 overhead bare Drake ACSR conductors. The normal operating climatic condition for static thermal rating calculation is assumed with an environmental temperature of 40 °C, a full-sun condition and a wind velocity of 0.61 m/s. The maximum allowable conductor surface temperature is assumed to be 100 °C, and the wind direction is assumed to remain perpendicular to OHLs.

Weather data to be used are first obtained from the NOAA (National Oceanic and Atmospheric Administration) daily and hourly climate Normals dataset of 13 stations located in the state of Wisconsin [51]. Table 2 gives a brief look at the locations, ambient temperatures, wind speeds and latitudes of these stations. An ARMA model is then adopted to generate sufficient hourly weather data points required for performing sequential MCS.

As mentioned before, in practice, electrical power systems are large-scale, interconnected networks operating in complex environments. Hence, to show the impact of multi-area dynamic weather states on the enforcement of DTR-NTO, the test systems are assumed to be geographically divided into different areas and then sectionalized with respect to different stations: the RTS-79 test system is sectionalized into four areas (Section I-IV) and the RTS-96 is sectionalized into 13 different areas (Section I-XIII), as shown in Fig. 6 and Fig. 8, respectively. Then for comparing the performance of different operation strategies integrations, simulations are conducted for these following cases:

a. Basic OPF enforced.
b. NTO enforced.
c. DTR and OPF enforced.
d. DTR and NTO enforced.

TABLE II

<table>
<thead>
<tr>
<th>Section</th>
<th>Location</th>
<th>Temperature Range (°C)</th>
<th>Wind Speed Range (m/s)</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Milwaukee</td>
<td>-21.16-34.12</td>
<td>0-12.52</td>
<td>42.955° N</td>
</tr>
<tr>
<td>II</td>
<td>Green Bay</td>
<td>-23.17-37.98</td>
<td>0-12.20</td>
<td>44.4794° N</td>
</tr>
<tr>
<td>III</td>
<td>Madison</td>
<td>-22.13-34.70</td>
<td>0-9.68</td>
<td>43.1406° N</td>
</tr>
<tr>
<td>IV</td>
<td>La Crosse</td>
<td>-25.23-36.59</td>
<td>0-13.10</td>
<td>43.8792° N</td>
</tr>
<tr>
<td>V</td>
<td>Kenosha</td>
<td>-21.76-34.72</td>
<td>0-14.69</td>
<td>42.595° N</td>
</tr>
<tr>
<td>VI</td>
<td>Sheboygan</td>
<td>-22.89-34.21</td>
<td>0-12.10</td>
<td>43.7694° N</td>
</tr>
<tr>
<td>VII</td>
<td>Racine</td>
<td>-21.25-34.12</td>
<td>0-11.50</td>
<td>42.7611° N</td>
</tr>
<tr>
<td>VIII</td>
<td>Oshkosh</td>
<td>-23.15-34.77</td>
<td>0-11.33</td>
<td>43.9844° N</td>
</tr>
<tr>
<td>IX</td>
<td>Eau Claire</td>
<td>-27.42-34.98</td>
<td>0-11.04</td>
<td>44.8653° N</td>
</tr>
<tr>
<td>X</td>
<td>Alexander Field</td>
<td>-24.62-34.21</td>
<td>0-9.80</td>
<td>44.3592° N</td>
</tr>
<tr>
<td>XI</td>
<td>Fond du Lac</td>
<td>-23.15-34.78</td>
<td>0-12.60</td>
<td>43.777° N</td>
</tr>
<tr>
<td>XII</td>
<td>Wausau ASOS</td>
<td>-25.87-34.17</td>
<td>0-12.50</td>
<td>44.9286° N</td>
</tr>
<tr>
<td>XIII</td>
<td>Lone Rock Tri</td>
<td>-23.75-33.60</td>
<td>0-13.10</td>
<td>43.2119° N</td>
</tr>
</tbody>
</table>

Fig. 5. Flow chart of DTR-NTO incorporated reliability evaluation procedure
is specified as 50 years: the EDNS coefficient of variation can be guaranteed to be no more than 2% then. The simulation environment for this study is based on MATLAB. Also, IBM CPLEX is used to solve the NTO problem.

![Diagram of RTS-79 system](image)

Fig. 6. Sectionalized RTS-79 system reflecting multi-area weather conditions

A. Impact of Multi-Area Weather Conditions on DTR Enforcement

Simulations are first conducted on the sectionalized IEEE RTS-79 system to demonstrate how multi-area weather conditions will affect the system reliability when DTR is enforced. The original ratings of all OHLs in the system has been modified to be 60% of their original values in [49].

Fig. 7 demonstrates part of the hourly dynamic thermal rating calculations with the consideration of multi-area weather conditions. The result contains the increments of hourly dynamic line ratings brought by the DTR mechanism in 2 weeks, within section III, section IV, and of the whole OHL connecting bus 14 and bus 16, crossing sections III and IV. Clearly, the quite dissimilar climatic characteristics in sections III and IV have induced volatile DTR increments. For lines crossing different areas, as the example OHL line 23, demonstrated in Fig. 7, it is thus important to properly determine the dynamic line ratings. Without considering multi-area weather conditions, the dynamic line ratings could be either overestimated or underestimated. Meanwhile, the results indicate that the OHL DTR increments presented in Fig. 7 may not be positive in some rare cases. At these moments, due to the harsh weather condition, the dynamic line rating is in fact lower than its static thermal rating value. However, as discussed previously the advantage of DTR is still more prominent: as the results in Fig. 7 have revealed, the line rating would be improved in most time.

![Graph of DTR increment](image)

Fig. 7. An example of DTR calculation considering multi-area weather conditions

In addition, the system-level impacts of the multi-area weather conditions on DTR enforced system reliability are illustrated in Table III. The results indicate that with the enforcement of DTR, the system reliability level has been improved: compared to the basic OPF case, the LOLE index has dropped by 27.65%, the EENS index has dropped by 28.44%. In addition, by neglecting the geographical distribution, the modified RTS-79 system could be assumed to be entirely located within either section I, II, III or IV. The varying reliability indices results indicate that, for systems with DTR enforced, the neglect of multi-area weather conditions could lead to biased system reliability assessment. In the simulated case, the biases could be up to 7% in the EENS index. Such biases could sometimes be vital for system operators faced with simultaneous component outages. Especially for the proposed DTR-NTO in this study, such biases may lead to false network reconfiguration solutions and bring risks to the system security.

<table>
<thead>
<tr>
<th>System</th>
<th>Cases</th>
<th>LOLE (h/yr.)</th>
<th>EENS (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic OPF</td>
<td></td>
<td>1206.69</td>
<td>205.857</td>
</tr>
<tr>
<td>DTR-OPF, considered multi-area</td>
<td></td>
<td>873.10</td>
<td>147.306</td>
</tr>
<tr>
<td>Sectionalized RTS-79, 60% transmission capability</td>
<td>DTR-OPF, based on Sec. I</td>
<td>795.66</td>
<td>136.966</td>
</tr>
<tr>
<td></td>
<td></td>
<td>801.23</td>
<td>139.328</td>
</tr>
<tr>
<td></td>
<td></td>
<td>866.88</td>
<td>147.509</td>
</tr>
<tr>
<td></td>
<td></td>
<td>857.39</td>
<td>147.053</td>
</tr>
</tbody>
</table>

B. Performance Comparison of OTS, BBS, and NTO

To demonstrate the performance of NTO and compare it with OTS and BBS, case studies are conducted on the IEEE RTS-79 system with OHLs’ rating being modified to 60% of their original values in [49].

<table>
<thead>
<tr>
<th>System</th>
<th>Scenarios</th>
<th>LOLE (h/yr.)</th>
<th>EENS (MWh/yr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS-79, 50% transmission capability</td>
<td>OTS</td>
<td>910.05</td>
<td>171.306</td>
</tr>
<tr>
<td></td>
<td>BBS</td>
<td>927.71</td>
<td>172.244</td>
</tr>
<tr>
<td></td>
<td>NTO</td>
<td>908.50</td>
<td>171.287</td>
</tr>
</tbody>
</table>
Clearly, with the deployment of either OTS, BBS or NTO enforced in the system, the reliability indices will decrease: compared to the basic OPF case, the LOLE index of OTS, BBS and NTO cases has dropped by 16.73%, 18.16%, and 19.88%, respectively; the EENS index of OTS, BBS and NTO cases has dropped by 6.72%, 6.66%, and 7.18%, respectively. Clearly, with the deployment of any of these network topology control technologies, the system reliability could be remarkably enhanced. Yet among all technologies, NTO exhibits a salient reliability reinforcement capability.

In Fig. 9, the average switching actions in each scenario are illustrated. The results indicate that, with the goal of minimizing the system total load curtailment, basically different network topology control technique requires different numbers of switching actions. Specifically, compared to OTS and BBS, the NTO requires fewer average number of line switching actions than OTS, and fewer average number of busbar switching actions than BBS as well. Therefore, the superiority of NTO can be summarized as follows: generally, the NTO offers the system operator with a broader choice of transmission network reconfiguration solutions; with a fewer number of line/busbar switching actions required, a more evident system reliability enhancement may be obtained.

C. Power System Reliability Evaluation Incorporating DTR-NTO

Then to demonstrate the effectiveness of the proposed DTR-NTO methodology, the simulation has been conducted on the sectionalized RTS-79 system with the thermal ratings of all OHLs being modified to be 60% of their original values in [49].

Based on the proposed methodology presented in section IV, the LOLE and EENS indices obtained are shown in Table V. It is obvious that the incorporation of DTR-NTO results in a significant improvement to the power system reliability: compared with OPF, the LOLE index in DTR-NTO has dropped by 43.84% and the EENS index in DTR-NTO has declined by 38.70%.

<table>
<thead>
<tr>
<th>System</th>
<th>Scenarios</th>
<th>LOLE (h/yr.)</th>
<th>EENS (MWh/yr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPF</td>
<td></td>
<td>1204.22</td>
<td>210,061</td>
</tr>
<tr>
<td>NTO</td>
<td></td>
<td>1011.68</td>
<td>196,945</td>
</tr>
<tr>
<td>DTR-OPF</td>
<td></td>
<td>853.48</td>
<td>152,174</td>
</tr>
<tr>
<td>DTR-NTO</td>
<td></td>
<td>830.02</td>
<td>151,168</td>
</tr>
</tbody>
</table>
Simulations have also been conducted on the sectionalized RTS-79 system with different OHL transmission capabilities. As shown in Fig. 10 and Fig. 11, with the transmission capabilities decreasing from 100% to 60%, both the LOLE and EENS indices increase accordingly. Among all four scenarios, the increase of LOLE and EENS in DTR-NTO scenario remains the smallest: 7.71% and 7.03% compared to 56.94% and 48.83% in OPF. In addition, compared with the other three scenarios, the LOLE and EENS values are also the smallest, inter alia for systems with low transmission capabilities. This observation indicates that the integration of DTR-NTO could help to enhance the power systems reliability. For power grids with aging OHLs or low power delivery capability, the benefits brought by DTR-NTO can be even greater.

To further demonstrate the scalability of the proposed methods and to show the impact of geographical weather variances, more simulations are conducted on the sectionalized RTS-96 system with all OHL transmission capacities being assumed to vary from 100% to 60% of their original values in [50].

The obtained LOLE and EENS indices are illustrated in Fig. 12 and Fig. 13, respectively. As expected, with the enforcement of DTR-NTO the system reliability is dramatically improved: among all four scenarios, the increases of LOLE and EENS in the DTR-NTO scenario are only 14.32% and 6.74%, compared to 289.16% and 101.95% in the OPF scenario. Moreover, the reliability indices in the DTR-NTO scenario are still the smallest among all four test scenarios. Although the enforcement of DTR or NTO alone could help enhance the system reliability already, the enforcement of the proposed joint deployment scheme, namely DTR-NTO, could lead to an even better performance.

Beside the system level performance, particularly the performance of DTR-NTO in some typical sampled system states are demonstrated in Table VI. These sampled system states all consist of severe contingencies: several generation unit outages, and even transmission line outages. With only traditional operating strategies, a great amount of load demands will be curtailed. Yet with DTR, NTO or the DTR-NTO, such load curtailment could be reduced, to a certain extent.
For instance, for example state iv, the load curtailment in DTR-OPF scenario is reduced to 9.63MW. Furthermore, in DTR-NTO scenario the load curtailment is reduced to zero. Such result indicates that even with boosted dynamic ratings of OHLs, the NTO mechanism may be able to find network reconfiguration solutions which could further reduce the load curtailment. On the other hand, for states ix and x where the failed components are identical, DTR-NTO has produced different load curtailment results. Apparently, such results indicate that the weather condition in the time of state x becomes better, resulting in further increased OHL dynamic ratings than those in state ix. In such a case, DTR-NTO could find an improved network reconfiguration strategy and help further reduce the load curtailment.

Certainly, the enforcement of DTR-NTO cannot always guarantee a full elimination of load curtailing due to component failures, as shown in sample states vi - x. However, the results imply that the enforcement of DTR-NTO is able to significantly mitigate the load curtailment of highly deficient system states, i.e., those states with severe failures caused by multiple components outages. In sum, the incorporation of DTR-NTO in the operating strategy could help to improve the system reliability, substantially.

VI. CONCLUSIONS AND FUTURE WORK

This study has incorporated the DTR and NTO mechanisms into the reliability assessment of power system. The impact of multi-area weather conditions on DTR performance has been theoretically discussed and illustrated in simulation. And the different network topology control techniques, the OTS, BBS and NTO has been discussed and compared both in the problem modeling and the practical influence on system reliability.

Simulations have been carried out on the modified IEEE RTS-79 and RTS-96 systems with geographical information reflecting different climatic characteristics. The numerical results obtained indicate that:

1) The consideration of multi-area weather conditions is important in OHL dynamic thermal rating calculations. Neglecting such impacts could lead to biased estimations of DTR performance, and hence bring risks to the system security.

2) The NTO technology which combines line switching and busbar splitting performs better than the traditional network topology control methods. With only a reasonable number of switching actions, NTO could help dramatically improve the system reliability.

3) The joint deployment of DTR-NTO could substantially improve the power system reliability. Such reliability enhancement could be much more significant than the cases where only DTR or NTO is enforced. Particularly, for electricity grids with limited transmission capacities, enforcement of DTR-NTO could become even more beneficial.

For the future work, the impact of renewable energy sources integrations will be investigated based on the proposed method. In addition, the effectiveness of DTR-NTO as remedial operation actions in the face of natural calamities (e.g., hurricanes, earthquakes or snowstorms) and man-made disasters (e.g., major cyberattacks or terrorist attacks) will be studied from the perspective of system resiliency.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural Science Fund of China (No. 51377178).

REFERENCES

